Three-Dimensional Magnetohydrodynamic Simulations of Spherical Accretion
نویسندگان
چکیده
We present three-dimensional numerical magnetohydrodynamic simulations of radiatively inefficient spherical accretion onto a black hole. The simulations are initialized with a Bondi flow, and with a weak, dynamically unimportant, large-scale magnetic field. The magnetic field is amplified as the gas flows in. When the magnetic pressure approaches equipartition with the gas pressure, the field begins to reconnect and the gas is heated up. The heated gas is buoyant and moves outward, causing line stretching of the frozen-in magnetic field. This leads to further reconnection, and more heating and buoyancy-induced motions, so that the flow makes a transition to a state of self-sustained convection. The radial structure of the flow changes dramatically from its initial Bondi profile, and the mass accretion rate onto the black hole decreases significantly. Motivated by the numerical results, we develop a simplified analytical model of a radiatively inefficient spherical flow in which convective transport of energy to large radii plays an important role. In this “convection-dominated Bondi flow” the accretion velocity is highly subsonic and the density varies with radius as ρ ∝ R−1/2 rather than the standard Bondi scaling ρ ∝ R−3/2. We estimate that the mass accretion rate onto the black hole correspondingly scales as Ṁ ∼ (Rin/Ra)ṀBondi, where Rin is a small multiple of the Schwarzschild radius of the black hole and Ra is the “accretion radius” at which the ambient gas in the surrounding medium is gravitationally captured by the black hole. Since the factor Rin/Ra is typically very small, Ṁ is significantly less than the Bondi accretion rate. Convection-dominated Bondi flows may be relevant for understanding many astrophysical phenomena, e.g. post-supernova fallback and radiatively inefficient accretion onto supermassive black holes, stellar-mass black holes and neutron stars. Subject headings: accretion — convection — galaxies: nuclei — MHD — supernovae — turbulence Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester NY 14623-1299. Institute of Astronomy, 48 Pyatnitskaya Ulitsa, 109017 Moscow, Russia.
منابع مشابه
The Dynamical Structure of Nonradiative Black Hole Accretion Flows
We analyze three-dimensional magnetohydrodynamic (MHD) simulations of a nonradiative accretion flow around a black hole using a pseudo-Newtonian potential. The flow originates from a torus initially centered at 100 gravitational (Schwarzschild) radii. Accretion is driven by turbulent stresses generated selfconsistently by the magnetorotational instability. The resulting flow has three well-defi...
متن کاملThree-Dimensional Simulations of Spherical Accretion Flows with Small-Scale Magnetic Fields
Spherical (nonrotating) accretion flows with small-scale magnetic fields have been investigated using three-dimensional, time-dependent MHD simulations. These simulations have been designed to model high-resolution (quasi) steady accretion flows in a wedge computational domain that represents a small fraction of the full spherical domain. Subsonic and supersonic (super-fast-magnetosonic) accret...
متن کاملMagnetohydrodynamic Simulations of Black Hole Accretion
We discuss the results of three-dimensional magnetohydrodynamic simulations, using a pseudo-Newtonian potential, of thin disk (h/r ≈ 0.1) accretion onto black holes. We find (i) that magnetic stresses persist within rms, the marginally stable orbit, and (ii) that the importance of those stresses for the dynamics of the flow depends upon the strength of magnetic fields in the disk outside rms. S...
متن کاملGeneral Relativistic Magnetohydrodynamic Simulations of Black Hole Accretion Disks
Observations are providing increasingly detailed quantitative information about the accretion flows that power such high energy systems as X-ray binaries and active galactic nuclei. Analytic models of such systems must rely on assumptions such as regular flow geometry and a simple, parameterized stress. Global numerical simulations offer a way to investigate the basic physical dynamics of accre...
متن کاملA Magnetohydrodynamic Nonradiative Accretion Flow in Three Dimensions
We present a global magnetohydrodynamic (MHD) three dimensional simulation of a nonradiative accretion flow originating in a pressure supported torus. The evolution is controlled by the magnetorotational instability which produces turbulence. The flow forms a nearly Keplerian disk. The total pressure scale height in this disk is comparable to the vertical size of the initial torus. Gas pressure...
متن کامل